(本小题满分12分)设.(Ⅰ)求的最大值及最小正周期;(Ⅱ)若锐角满足,求的值.
已知函数数列的前n项和为,,在曲线(1)求数列{}的通项公式;(II)数列{}首项b1=1,前n项和Tn,且,求数列{}通项公式bn.
如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=.(1)求证:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值
在中,角所对的边为已知.(1)求值;(2)若面积为,且,求值.
已知函数(1)当的取值范围;(2)是否存在这样的实数,使得函数在区间上为减函数,且最大值为1,若存在,求出值;若不存在,说明理由。
设命题:实数满足,其中;命题:实数满足且的必要不充分条件,求实数的取值范围.