如图,椭圆的中心在原点,为椭圆的左焦点, 为椭圆的一个顶点,过点作与垂直的直线交轴于点, 且椭圆的长半轴长和短半轴长是关于的方程(其中为半焦距)的两个根.(1)求椭圆的离心率;(2)经过、、三点的圆与直线相切,试求椭圆的方程.
袋中有同样的球5个,其中3个红色,2个黄色,现从中随机且不返回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量为此时已摸球的次数,求:(1)随机变量的概率分布; (2)随机变量的数学期望.
(1)已知,,是否存在常数时,使得的值域为[]?若存在,求出的值,若不存在,说明理由。(2)若关于的方程在内有实数根,求实数的范围。
圆内有一点,为过点且倾斜角为的弦,(1)当=1350时,求;(2)当弦被点平分时,求出直线的方程; (3)设过点的弦的中点为,求点的轨迹方程.
如图,在平面直角坐标系中,锐角和钝角的终边分别与单位圆交于,两点.(1)如果、两点的纵坐标分别为、,求和; (2)在(1)的条件下,求的值;(3)已知点,求函数f()=的值域.
在△ABC中,角A、B、C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;(2)求sinA+cosA的最大值,并求取得最大值时角A,B的大小.