某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,以此类推,即每年增加1千元。问这台机器最佳使用年限是多少年?(年平均费用最低时为最佳使用年限),并求出平均费用的最小值。
设抛物线的焦点为,其准线与轴的交点为,过点的直线交抛物线于两点. (1)若直线的斜率为,求证:; (2)设直线的斜率分别为,求的值.
在数列中,(). (1)求的值; (2)是否存在常数,使得数列是一个等差数列?若存在,求的值及的通项公式;若不存在,请说明理由.
如图,是圆的直径,垂直于圆所在的平面,是圆上的点. (1)求证:平面平面; (2)若,求二面角的余弦值.
已知函数对任意满足,,若当时,(且),且. (1)求实数的值; (2)求函数的值域.
已知函数. (1)当时,求曲线在点(1,f(1))处的切线方程; (2)当时,若f(x)在区间[1,e]上的最小值为-2,求的值; (3)若对任意,且恒成立,求的取值范围.