(本小题满分14分)如图,直线与椭圆交于两点,记的面积为.(I)求在,的条件下,的最大值;(II)当,时,求直线的方程.
已知,.试求(Ⅰ) 的值;(Ⅱ)的值.
已知直线过定点与圆:相交于、两点.求:(1)若,求直线的方程;(2)若点为弦的中点,求弦的方程.
曲线极坐标方程为,直线参数方程为(为参数)(1)将化为直角坐标方程(2)与是否相交?若相交求出弦长,不相交说明理由。
椭圆的离心率为,长轴端点与短轴端点间的距离为. (Ⅰ)求椭圆的方程;(Ⅱ)过点的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率.
.已知⊙C的参数方程为,(为参数),是⊙C与轴正半轴的交点,以圆心C为极点,轴正半轴为极轴建立极坐标系.(Ⅰ)求⊙C的普通方程.(Ⅱ)求过点P的⊙C的切线的极坐标方程.