(本小题满分14分) 如图3所示,四棱锥中,底面为正方形, 平面,,,,分别为、、的中点.(1)求证:;(2)求二面角D-FG-E的余弦值.
若点在抛物线上,点在圆上,求的最小值。
已知是上的点,是抛物线的焦点,求证:。
是抛物线上两点,满足(为坐标原点),求证(1)两点的横坐标之积、纵坐标之积分别为定值;(2)直线过一定点。
抛物线的顶点在原点,焦点是圆的圆心,(1)求抛物线的方程;(2)直线的斜率为,且过抛物线的焦点,若与抛物线、圆依次交于四个点,求。
求顶点在原点,焦点在轴上,且截直线所得的弦长为的抛物线的方程。