已知(I)求的值;(II)设的值。
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.(I)求证:BD⊥FG;(II)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.(III)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
已知函数的图象经过点 (I)求实数a、b的值;(II)若,求函数的最大值及此时x的值.
已知函数(1)若,求曲线处的切线;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数上至少存在一点,使得成立,求实数的取值范围。
已知椭圆的离心率为,长轴长为,直线交椭圆于不同的两点A、B。(1)求椭圆的方程;(2)求的值(O点为坐标原点);(3)若坐标原点O到直线的距离为,求面积的最大值。
在数列中,(1)求的值;(2)证明:数列是等比数列,并求的通项公式;(3)求数列。