(本小题满分14分)已知函数.(1)证明:函数 对于定义域内任意都有:成立.(2)已知的三个顶点、、都在函数的图象上,且横坐标依次成等差数列,求证:是钝角三角形,但不可能是等腰三角形.
已知为定义在上的奇函数,当时,; (1)求在上的解析式; (2)试判断函数在区间上的单调性,并给出证明.
函数, (1)若的定义域为R,求实数的取值范围. (2)若的定义域为[-2,1],求实数的值
已知函数 (1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值. (2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.
判断并利用定义证明f(x)=在(-∞,0)上的增减性.
设函数, (1)若函数在处与直线相切; ①求实数的值;②求函数上的最大值; (2)当时,若不等式对所有的都成立,求实数的取值范围.