选修4-1:几何证明选讲如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB、FC.(Ⅰ)求证:FB=FC;(Ⅱ)求证:FB2=FA·FD;
选修4-1:几何证明选讲(本小题满分10分)如图,是直角,圆O与AP相切于点T,与AQ相交于两点B,C。求证:BT平分
(本小题满分16分)设数列的前n项和为,已知为常数,),eg (1)求p,q的值; (2)求数列的通项公式; (3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由。
(本小题满分16分)已知函数,其中e是自然数的底数,。 (1)当时,解不等式; (2)若在[-1,1]上是单调增函数,求的取值范围; (3)当时,求整数k的所有值,使方程在[k,k+1]上有解。
(本小题满分16分)平面直角坐标系xoy中,直线截以原点O为圆心的圆所得的弦长为 (1)求圆O的方程; (2)若直线与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线的方程; (3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由。
(本小题满分14分)现有一张长为80cm,宽为60cm的长方形铁皮ABCD,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失。如图,若长方形ABCD的一个角剪下一块铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为x (cm),高为y (cm),体积为V (cm3) (1)求出x 与 y 的关系式; (2)求该铁皮盒体积V的最大值;