(本小题满分12分)已知是定义在R上的奇函数,当时,,(1)求函数;(2)解不等式.
在△中,角的对边分别为,且,.(1)求角的大小;(2)若,,求边的长和△的面积.
对于数列,把作为新数列的第一项,把或()作为新数列的第项,数列称为数列的一个生成数列.例如,数列的一个生成数列是.已知数列为数列的生成数列,为数列的前项和.(1)写出的所有可能值;(2)若生成数列满足,求数列的通项公式;(3)证明:对于给定的,的所有可能值组成的集合为.
给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(1)求椭圆的方程和其“准圆”方程;(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程,并证明;(ⅱ)求证:线段的长为定值.
设函数.(1)若,求函数的单调区间;(2)若函数在区间上是减函数,求实数的取值范围;(3)过坐标原点作曲线的切线,证明:切点的横坐标为.
如图,正三棱柱的底面边长是,侧棱长是,是的中点.(1)求证:∥平面;(2)求二面角的大小;(3)在线段上是否存在一点,使得平面平面,若存在,求出的长;若不存在,说明理由.