(本小题满分10分)在中,分别为角A、B、C的对边,且满足(Ⅰ)求角A的值;(Ⅱ)若的最大值。
如图,正四棱柱中,,点在上且.(Ⅰ)证明:平面;(Ⅱ)连结,求二面角的正弦值.
已知函数有最小值.(Ⅰ)求实数的取值范围;(Ⅱ)设为定义在上的奇函数,且时,,求的解析式.
在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点.(Ⅰ)求证:面;(Ⅱ)求点到面的距离.
若函数,的定义域都是集合,函数和的值域分别为和.(Ⅰ)若,求;(Ⅱ)若,且,求实数m的值.
已知椭圆,椭圆的右焦点为F.(1)求过点F且斜率为1的直线被椭圆截得的弦长.(2)求以M(1,1)为中点的椭圆的弦所在的直线方程.(3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦 AB的中点P的轨迹方程.