如图四棱锥P-ABCD中,底面ABCD为矩形,PA底面ABCD,PA=AB=,点E是棱PB的中点。(1)求直线AD与平面PBC的距离。(2)若AD=,求二面角A-EC-D的平面角的余弦值。
(本小题满分13 分)无穷数列 :,,……,,……,满足,且,对于数列,记,其中表示集合中最小的数.(1)若数列:1,3,4,7,……,写出,,……,;(2)若,求数列前项的和;(3)已知,求的值.
(本小题满分14 分)设,分别为椭圆:的左、右焦点,点为椭圆的左顶点,点为椭圆的上顶点,且.(1)若椭圆的离心率为,求椭圆的方程;(2)设为椭圆上一点,且在第一象限内,直线与轴相交于点,若以为直径的圆经过点,证明:
(本小题满分13分)已知函数,其中.(1)当时,求的单调区间;(2)当时,证明:存在实数,使得对于任意的实数,都有成立.
(本小题满分14 分)如图1,在边长为4的菱形中,,于点,将沿折起到的位置,使,如图 2. (1)求证:平面;(2)求二面角的余弦值;(3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由.
(本小题满分13 分)某厂商调查甲、乙两种不同型号电视机在10 个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(1)当时,记甲型号电视机的“星级卖场”数量为,乙型号电视机的“星级卖场”数量为,比较,的大小关系;(2)在这10 个卖场中,随机选取2 个卖场,记为其中甲型号电视机的“星级卖场”的个数,求的分布列和数学期望;(3)若,记乙型号电视机销售量的方差为,根据茎叶图推断为何值时,达到最小值.(只需写出结论)