(本小题满分12分)青海玉树发生地震后,为重建,对某项工程进行竞标,现共有6家企业参与竞标,其中A企业来自辽宁省,B、C两家企业来自福建省,D、E、F三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同。(Ⅰ)列举所有企业的中标情况;(Ⅱ)在中标的企业中,至少有一家来自福建省的概率是多少?
如图,在三棱锥中,直线平面,且,又点,,分别是线段,,的中点,且点是线段上的动点. 证明:直线平面; (2) 若,求二面角的平面角的余弦值.
设数列的前项和为, 已知,,,是数列的前项和. (1)求数列的通项公式;(2)求; (3)求满足的最大正整数的值.
已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=. (1)若△ABC的面积S=,求b+c的值. (2)求b+c的取值范围.
已知() (1)若方程有3个不同的根,求实数的取值范围; (2)在(1)的条件下,是否存在实数,使得在上恰有两个极值点,且满足,若存在,求实数的值,若不存在,说明理由.
抛物线,直线过抛物线的焦点,交轴于点. (1)求证:; (2)过作抛物线的切线,切点为(异于原点), (ⅰ)是否恒成等差数列,请说明理由; (ⅱ)重心的轨迹是什么图形,请说明理由.