(本小题满分12分)某公司在“2010年上海世博会知识宣传”活动中进行抽奖活动,抽奖规则是:在一个盒子中装有8张大小相同的精美卡片,其中2张印有“世博会欢迎您”字样,2张印有“世博会会徽”图案,4张印有“海宝”(世博会吉祥物)图案,现从盒子里无放回的摸取卡片,找出印有“海宝”图案的卡片表示中奖且停止摸卡。(Ⅰ)求最多摸两次中奖的概率;(Ⅱ)用表示摸卡的次数,求的分布列和数学期望。
设曲线在点处的切线斜率为,且,对一切实数,不等式恒成立. (1) 求的值; (2) 求函数的表达式; (3) 求证:.
设函数. (1)求函数的单调区间和极值。 (2)若关于的方程有三个不同实根,求实数的取值范围; (3)已知当(1,+∞)时,恒成立,求实数的取值范围.
阅读下面材料:根据两角和与差的正弦公式,有 ----------①------② 由①+② 得------③ 令有 代入③得 . (1)利用上述结论,试求的值。 (2)类比上述推证方法,根据两角和与差的余弦公式,证明:;
已知中至少有一个小于2。
已知,复数z =. (1)实数m取什么值时,复数z为纯虚数? (2)实数m取什么值时,复数z对应的点在直线上?