(本小题满分12分)已知函数f(x)=x2(x-3a)+1(a>0,x∈R).(I)求函数y=f(x)的极值;(II)函数y=f(x)在(0,2)上单调递减,求实数a的取值范围;(III)若在区间(0,+∞)上存在实数x0,使得不等式f(x0)-4a3≤0能成立,求实数a的取值范围.
已知向量, 设函数. (1)求的最小正周期; (2)求在上的最大值和最小值.
已知定义在上的函数 (1)求的值; (2)若实数,求的最小值及取得最小值时对应的的值。
已知函数的周期为,图像的一个对称中心为,将函数图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图像向右平移个单位长度后得到函数的图像. (1)求函数与的解析式; (2)若,是第一象限的角,且,求的值.
某货轮在A处看灯塔S在北偏东30°,它以每小时36海里的速度向正北方向航行,40分钟航行到B处,看灯塔S在北偏东75°,求这时货轮到灯塔S的距离.
已知 1)若,求的单调递增区间 2)当时,的最大值为4,求的值 3)在2)的条件下,求满足且的集合