(本小题满分12分) 已知m=(cosωx+sinωx,cosωx),n=(cosωx-sinωx,2sinωx),其中ω>0,若函数f(x)=m·n,且f(x)的对称中心到f(x)的对称轴的最近距离不小于. (I)求ω的取值范围; (II)在△ABC中,a,b,c分别是内角A,B,C的对边,且a=1,b+c=2,当ω取最大值时,f(A)=1,求△ABC的面积.
如图所示,在四棱锥PABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1. (1)证明:PC⊥AD; (2)求二面角A-PC-D的正弦值.
已知函数的在区间上的最小值为0.(Ⅰ)求常数a的值;(Ⅱ)当时,求使成立的x的集合.
设函数是实数集R上的奇函数. (1)求实数的值; (2)判断在上的单调性并加以证明; (3)求函数的值域.
设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前项和.
已知各项均为正数的数列满足,,.(1)求证:数列是等比数列;(2)当取何值时,取最大值,并求出最大值;(3)若对任意恒成立,求实数的取值范围.