(本小题满分14分) 如图,在四棱锥P—ABCD中,AB∥CD,CD=2AB,AB平面PAD,E为PC的中点. (1)求证:BE∥平面PAD; (2)若ADPB,求证:PA平面ABC D.
已知椭圆:的离心率为,且过点,设椭圆的右准线与轴的交点为,椭圆的上顶点为,直线被以原点为圆心的圆所截得的弦长为.⑴求椭圆的方程及圆的方程;⑵若是准线上纵坐标为的点,求证:存在一个异于的点,对于圆上任意一点,有为定值;且当在直线上运动时,点在一个定圆上.
如图,为一个等腰三角形形状的空地,腰的长为(百米),底的长为(百米).现决定在空地内筑一条笔直的小路(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为和.⑴若小路一端为的中点,求此时小路的长度;⑵求的最小值.
在菱形中,,线段的中点是,现将沿折起到的位置,使平面和平面垂直,线段的中点是.⑴证明:直线∥平面;⑵判断平面和平面是否垂直,并证明你的结论.
(本小题满分14分)已知函数的定义域为R, 且对于任意R,存在正实数,使得都成立.若,求的取值范围;当时,数列满足,.证明:;令,证明:.
(本小题满分14分)已知函数满足,对于任意R都有,且,令.(1)求函数的表达式;(2)求函数的单调区间;研究函数在区间上的零点个数.