(本小题满分12分)设椭圆的离心率,右焦点到直线的距离为坐标原点.(Ⅰ)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明:点到直线的距离为定值,并求弦长度的最小值.
(本小题满分12分)已知关于的一元二次函数 (Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和,求函数在区间[上是增函数的概率;(Ⅱ)设点(,)是区域内的随机点,求函数上是增函数的概率。
(本小题满分13分)已知函数(其中x≥1且x≠2). (1)求函数的反函数 (2)设,求函数最小值及相应的x值; (3)若不等式对于区间上的每一个x值都成立,求实数m的取值范围.
(本小题满分12分)已知二次函数满足,且关于的方程的两个实数根分别在区间、内 (1)求实数的取值范围; (2)若函数在区间上具有单调性,求实数的取值范围.
某企业为了适应市场需求,计划从2010年元月起,在每月固定投资5万元的基础上,元月份追加投资6万元,以后每月的追加投资额均为之前几个月投资额总和的20%,但每月追加部分最高限额为10万元. 记第n个月的投资额为(1)求与n的关系式;(2)预计2010年全年共需投资多少万元?(精确到0.01,参考数据:
(本小题满分14分)设数列的前项和为,且,其中为常数,且、0.(1)证明:数列是等比数列;(2)设数列的公比,数列满足,求数列的通项公式;(3)设,数列的前项和为,求证:当时,