(本小题满分14分)已知椭圆的左、右焦点分别为,点是轴上方椭圆上的一点,且, , .(Ⅰ) 求椭圆的方程和点的坐标;(Ⅱ)判断以为直径的圆与以椭圆的长轴为直径的圆的位置关系;(Ⅲ)若点是椭圆:上的任意一点,是椭圆的一个焦点,探究以为直径的圆与以椭圆的长轴为直径的圆的位置关系.
已知函数,为正整数.(Ⅰ)求和的值;(Ⅱ)数列的通项公式为(),求数列的前项和;(Ⅲ)设数列满足:,,设,若(Ⅱ)中的满足:对任意不小于3的正整数n,恒成立,试求m的最大值.
已知数列{an}的前n项和为(Ⅰ)求数列{an}的通项公式;(Ⅱ)若,求数列{Cn}的前n项和Tn
建造一断面为等腰梯形的防洪堤(如图),梯形的腰与底边所角为60°,考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为m2,为了使堤的上面与两侧面的水泥用料最省,要求断面的外周长(梯形的上底BC与两腰长的和)最小.如何设计防洪堤,才能使水泥用料最省.
已知直线过点(1)若直线在坐标轴上的截距相等,求直线的方程;(2)若直线与坐标轴的正半轴相交,求使直线在两坐标轴上的截距之和最小时,直线的方程。
在△ABC中,角A,B,C所对的边长分别是a,b,c.(1)若sin C + sin(B-A)=" sin" 2A,试判断△ABC的形状;(2)若△ABC的面积S = 3,且c =,C =,求a,b的值