(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.(I)试写出直线的直角坐标方程和曲线的参数方程;(II)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.
已知数列中,, (Ⅰ)记,求证:数列为等比数列; (Ⅱ)求数列的前项和
已知函数 (Ⅰ)求的最小正周期; (Ⅱ)在△ABC中,角A,B,C所对的边分别是,,,若且, 试判断△ABC的形状.
某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
已知函数在点处取得极小值-4,使其导数的的取值范围为,求: (1)的解析式; (2),求的最大值;
已知:A、B、C是的内角,分别是其对边长,向量,,. (Ⅰ)求角A的大小; (Ⅱ)若求的长.