(本小题满分12分)点M在椭圆上,以M为圆心的圆与x轴相切于椭圆的右焦点F.(I)若圆M与y轴相交于A、B两点,且△ABM是边长为2的正三角形,求椭圆的方程;(II)已知点F(1,0),设过点F的直线l交椭圆于C、D两点,若直线l绕点F任意转动时,恒有成立,求实数的取值范围.
已知a是以点A(3,-1)为起点,且与向量b= (-3,4)平行的单位向量,则向量a的终点坐标是多少?
(本小题满分12分)已知数列. (1)求数列的通项公式; (2)设,探求使恒成立的的最大整数值.
(本小题满分12分) 港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站为31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问检查站C离港口A有多远?
(本小题满分12分) 如图,平面⊥平面,是直角三角形,,四边形是直角梯形,其中,,,且,是的中点,分别是的中点. (Ⅰ)求证:平面; (Ⅱ)求二面角的正切值.
已知数列是递增数列,且满足。 (1)若是等差数列,求数列的通项公式; (2)对于(1)中,令,求数列的前项和。