椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点.(1)求椭圆的方程及线段的长;(2)在与图像的公共区域内,是否存在一点,使得的弦与的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.
设函数,⑴当时,讨论函数的单调性;⑵若函数仅在处有极值,试求的取值范围。
为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:厘米)满足关系:,若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。⑴求的值及的表达式;⑵隔热层修建多厚时,总费用达到最小,并求最小值.
设全集是实数集R,,。⑴当,求,。⑵若,求实数的取值范围.
已知,设命题函数在R上单调递增;命题不等式对任意恒成立。若且为假,或为真,求的取值范围。
设复数满足,求复数及。