(本小题共12分)已知函数,⑴若函数f(x)在区间(0,2)上递减,在[2,+∞)上递增,求a的值;⑵在①的条件下是否存在实数m,使得函数的图像与函数的图像恰好有三个不同的交点,若存在,请求出实数m的取值范围;若不存在,请说明理由。
已知函数 (1)当时,使得,求实数的取值范围; (2)若在区间上,函数的图象恒在直线的下方,求实数的取值范围.
已知且,函数, (1)若,求函数的值域; (2)利用对数函数单调性讨论不等式中的取值范围.
已知函数,在曲线上的点处的切线与直线平行. (1)若函数在时取得极值,求,的值; (2)在(1)的条件下求函数的单调区间.
已知,设命题函数在上为减函数,命题当时,函数恒成立.如果“或”为真命题, “且”为假命题,求的取值范围.
已知二次函数在区间上有最大值,求实数的值.