解关于的不等式:
已知向量a=(sinθ,cosθ),b=(,1),其中θ∈(0,).(1)若a∥b,求sinθ和cosθ的值;(2)若f(θ)=(a+b)2,求f(θ)的值域.
设平面向量a=(cosx,sinx),b=(cosx+2,sinx),x∈R.(1)若x∈(0,),证明:a和b不平行;(2)若c=(0,1),求函数f(x)=a·(b-2c)的最大值,并求出相应的x值.
已知函数f(x)=cosx·cos(x-).(1)求f的值;(2)求使f(x)<成立的x的取值集合.
在△ABC中,角A,B,C的对边分别为a,b,c,且cos(A-B)cosB-sin(A-B)sin(A+C)=-.(1)求sinA的值;(2)若a=4,b=5,求向量在方向上的投影.
设函数f(x)=-sin2ωx-sinωxcosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.(1)求ω的值;(2)求f(x)在区间[π,]上的最大值和最小值.