设定义在R上的函数f(x)=ax3+bx2+cx+d满足:①函数f(x)的图像过点P(3,-6);②函数f(x)在x1,x2处取极值,且|x1-x2|=4;③函数y=f(x-1)的图像关于点(1,0)对称。(1)求f(x)的表达式;(2)若α,β∈R,求证;(3)求过点P(3,-6)与函数f(x)的图像相切的直线方程。
等差数列中,且成等比数列,求数列前20项的和.
直线和轴,轴分别交于点,在线段为边在第一象限内作等边△,如果在第一象限内有一点使得△和△的面积相等,求的值。
已知数列{an}及fn(x)=a1x+a2x2+…+anxn, fn(-1)=(-1)nn,n=1,2,3,…, (1)求 a1, a2, a3的值; (2)求数列{an}的通项公式; (3)求证:.
在中,角的对边分别为,。 (1)求的值; (2)求的面积.
在某海滨城市附近海面上有一台风,据监测,当前台风中心位于城市O的东偏南方向300的海面P处,并以的速度向西偏北方向移动。台风侵袭的范围为圆形区域,当前半径为60,并以的速度不断增大,问几时后该城市开始受到台风的侵袭?