(本小题满分12分)我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.如图,“盾圆”是由椭圆与抛物线中两段曲线合成,为椭圆左、右焦点,,为椭圆与抛物线的一个公共点,.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过的一条直线,与“盾圆”依次交于四点,使得与的面积之比为,若存在,求出直线的方程;若不存在,说明理由.
甲、乙两门高射炮同时向一敌机开炮,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.8,求敌机被击中的概率(用两种方法求解).
50件产品中有3件次品,不放回地抽取2次,每次抽1件,已知第1次抽出的是次品,求第2次抽出的也是次品的概率.
为防止某突发事件,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后突发事件不发生的概率(记为)和所需费如下表:
预防方案可单独采用一种预防措施或联合采用几种预防措施.在总费不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.
一个口袋中装有若干个均匀的红球和白球,从中摸出一个红球的概率是.有放回地摸球,每次摸出一个,有3次摸到红球即停止. (1)求恰好摸5次停止的概率; (2)记5次之内(含5次)摸到红球的次数为X,求随机变量X的分布列.
某人提出一问题,甲先答,答对的概率为0.6,如果甲答错,由乙答,乙答对的概率是0.7,求由乙解出该问题的概率.