(本小题满分12分)我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.如图,“盾圆”是由椭圆与抛物线中两段曲线合成,为椭圆左、右焦点,,为椭圆与抛物线的一个公共点,.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过的一条直线,与“盾圆”依次交于四点,使得与的面积之比为,若存在,求出直线的方程;若不存在,说明理由.
某商店统计了最近6个月某商品的进价x(元)与售价y(元)的对应数据如下表:
则回归直线方程是_______________. 注:线性回归直线方程系数公式: ,a=y-bx
在直角坐标系中,以O为圆心的圆与直线相切. (1)求圆O的方程; (2)圆O与轴相交于两点,圆内的动点满足, 求的取值范围.
如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。 (1)证明:PB//平面EAC; (2)若AD="2AB=2," 求直线PB与平面ABCD所成角的正切值;
已知直线l经过点P(-2,5),且斜率为 (1)求直线l的方程; (2)求与直线l切于点(2,2),圆心在直线上的圆的方程.
已知在⊿ABC中,A(3,2)、B(-1,5),C点在直线上,若⊿ABC的面积为10,求C点的坐标.