(本小题满分12分)已知椭圆的两焦点为,离心率。(1)求此椭圆的方程;(2)设直线,若与此椭圆相交于P、Q两点,且等于椭圆的短轴长,求m的值.
设定义在上的函数满足:对任意,都有,且当时,.⑴求的值;⑵判断并证明函数的单调性;⑶如果,解不等式.
函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形。(Ⅰ)求的值及函数的值域;(Ⅱ)若,且,求的值。
设平面内的向量,,,点是直线上的一个动点,且,求的坐标及的余弦值.
在△ABC中,角A,B,C所对的边长分别是a,b,c.(1)若sin C + sin(B-A)=" sin" 2A,试判断△ABC的形状;(2)若△ABC的面积S = 3,且c =,C =,求a,b的值.
已知与圆C:x2+y2-2x-2y+1=0相切的直线l交x轴,y轴于A,B两点,OA|=a,|OB|=b(a>2,b>2).(Ⅰ)求证:(a-2)(b-2)=2;(Ⅱ)求线段AB中点的轨迹方程;(Ⅲ)求△AOB面积的最小值.