已知均为实数,且,求证:中至少有一个大于。
如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=. (1)求证:MN⊥平面ABN; (2)求二面角A—BN—C的余弦值.
向量函数图象上相邻两个对称轴间的距离为时,函数的最小值为0.(1)求函数的表达式;(2)在△ABC中,若的值.
)已知、是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段与轴的交点满足;(Ⅰ)求椭圆的标准方程;(Ⅱ)过椭圆的右焦点作直线l交椭圆于A、B两点,交y轴于M点,若,求的值.
(本小题满分12分)在数列中,已知a1=2,an+1=4an-3n+1,n∈.(1)设,求数列的通项公式;(2)设数列的前n项和为Sn,证明:对任意的n∈,不等式Sn+1≤4Sn恒成立.
(本小题满分10分)在△ABC中,已知角A、B、C所对的边分别是a、b、c,且a=2,,设.(1)用表示b;(2)若求的值.