如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=. (1)求证:MN⊥平面ABN; (2)求二面角A—BN—C的余弦值.
已知集合A=,B={x|x2-2x-m<0}, (1)当m=3时,求A∩(∁RB); (2)若A∩B={x|-1<x<4},求实数m的值.
已知双曲线的离心率为2,焦点与椭圆的焦点相同,求双曲线的方程及焦点坐标。
Δ两个顶点的坐标分别是,边所在直线的斜率之积等于,求顶点的轨迹方程,并画出草图。
方程的曲线是焦点在上的椭圆 ,求的取值范围
求满足下列条件的椭圆方程长轴在轴上,长轴长等于12,离心率等于;椭圆经过点;椭圆的一个焦点到长轴两端点的距离分别为10和4.