(本小题满分12分) : 已知: (1)求: (2)求:
已知半径为的球内有一个内接正方体(即正方体的顶点都在球面上).(1)求此球的体积;(2)求此球的内接正方体的体积;(3)求此球的表面积与其内接正方体的全面积之比.
已知函数满足:对任意,都有成立,且时,.(1)求的值,并证明:当时,;(2)判断的单调性并加以证明;(3)若在上递减,求实数的取值范围.
设函数 ().(1)若为偶函数,求实数的值;(2)已知,若对任意都有恒成立,求实数的取值范围.
某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,小时内供水总量为吨(),从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?
已知函数.(1)求函数定义域和函数图像所过的定点;(2)若已知时,函数最大值为2,求的值.