(本小题满分12分)已知函数, (1)当时,求函数的单调递增区间; (2)若函数在[2,0]上不单调,且时,不等式恒成立,求实数a的取值范围.
某同学在一次研究性学习中发现以下四个不等式都是正确的:;;;.请你观察这四个不等式:(1)猜想出一个一般性的结论(用字母表示);(2)证明你的结论.
设分别是椭圆的左,右焦点,过的直线与相交于两点,且成等差数列.(1)求; (2)若直线的斜率为1,求的值.
已知函数在与时都取得极值. (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围.
已知函数.(1)求函数在上的最大值和最小值;(2)求证:当时,函数的图像在的下方.
设是首项为a,公差为d的等差数列,是其前n项的和。记,其中c为实数。(1)若,且成等比数列,证明:;(2)若是等差数列,证明:。