(本小题满分14分)已知定义域为[0, 1]的函数f(x)同时满足: ①对于任意的x[0, 1],总有f(x)≥0; ②f(1)=1; ③若0≤x1≤1, 0≤x2≤1, x1+x2≤1, 则有f(x1+x2) ≥ f(x1)+f(x2).(1)试求f(0)的值; (2)试求函数f(x)的最大值;(3)试证明:当x, nN+时,f(x)<2x.
已知焦点在轴,顶点在原点的抛物线经过点P(2,2),以上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点.(1)求抛物线的方程;(2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论;(3)当圆心在抛物线上运动时,记,,求的最大值.
已知函数.(1)若,解方程;(2)若函数在上单调递增,求实数的取值范围;(3)若且不等式对一切实数恒成立,求的取值范围
如图,在直三棱柱中, ,,点是的中点,(1)求证:∥平面;(2)设点在线段上,,且使直线和平面所成的角的正弦值为,求的值.
在中,,,,角为锐角.(1)求角和边;(2)求的值.
已知是椭圆的左,右顶点,,过椭圆C的右焦点的直线交椭圆于点,交直线于点,且直线的斜率成等差数列,是椭圆上的两动点,的横坐标之和为2,的中垂线交轴于点(1)求椭圆的方程;(2)求△的面积的最大值