如图,在直三棱柱 A B C - A 1 B 1 C 1 中, A A 1 = 2 , A B = 1 , ∠ A B C = 90 ° ;点 D , E 分别在 B B 1 , A 1 D 上,且 B 1 E ⊥ A 1 D ,四棱锥 C - A B D A 1 与直三棱柱的体积之比为3:5.
(1)求异面直线 D E 与 B 1 C 1 的距离; (2)若 B C = 2 ,求二面角 A 1 - D C 1 - B 1 的平面角的正切值.
已知两个正数a,b满足a+b=1(1)求证:;(2)若不等式对任意正数a,b都成立,求实数x的取值范围.
已知直线:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求|MA|•|MB|的值.
已知二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3(1)求n的值;(2)求展开式中项的系数(3)计算式子的值.
如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于点A(-1,0)、B (3,0)两点,直线y=x-2与x轴交于点D.与y轴交于点C.点P是x轴下方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=3EF,求m的值.
如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.