已知函数 f ( x ) = x 2 t - 2 t ( x 2 + x ) + x 2 + 2 t 2 + 1 , g ( x ) = 1 2 f ( x ) . (I)证明:当 t < 2 2 时, g ( x ) 在 R 上是增函数; (II)对于给定的闭区间 [ a , b ] ,试说明存在实数 k ,当 t > k 时, g ( x ) 在闭区间 [ a , b ] 上是减函数; (III)证明: f ( x ) ≥ 3 2 .
由函数确定数列,.若函数能确定数列,,则称数列是数列的“反数列”.(1)若函数确定数列的反数列为,求;(2)对(1)中的,不等式对任意的正整数恒成立,求实数的取值范围;(3)设(为正整数),若数列的反数列为,与的公共项组成的数列为(公共项为正整数),求数列的前项和.
已知函数,(1)若是常数,问当满足什么条件时,函数有最大值,并求出取最大值时的值;(2)是否存在实数对同时满足条件:(甲)取最大值时的值与取最小值的值相同,(乙)?(3)把满足条件(甲)的实数对的集合记作A,设,求使的的取值范围.
上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.
在中,已知.(1)求证:; (2)若求角A的大小.
如图,正三棱柱ABC—A1B1C1的各棱长都相等,M、E分别是和AB1的中点,点F在BC上且满足BF∶FC=1∶3.(1)求证:BB1∥平面EFM;(2)求四面体的体积.