(本小题满分14分)(注意:在试题卷上作答无效)设数列的前项和为,对一切,点都在函数 的图象上. (Ⅰ)求及数列的通项公式;(Ⅱ) 将数列依次按1项、2项、3项、4项循环地分为(),(,),(,,),(,,,);(),(,),(,,),(,,,);(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;(Ⅲ)令(),求证:
求值(1) (2)已知,求的值.
已知椭圆的右焦点为,离心率为。 (1)若,求椭圆的方程。 (2)设直线与椭圆相交于两点,分别为线段的中点。若坐标原点在以线段为直径的圆上,且,求的取值范围。
已知函数 (1)求函数的单调区间; (2)设,对任意的,总存在,使得不等式成立,求实数的取值范围。
已知函数 (1)若在上是增函数,求实数的取值范围; (2)若是的极值点,求在上的最小值和最大值.
如图,三棱柱的所有棱长都为2,为中点,平面 (1)求证:平面; (2)求二面角的余弦值; (3)求点到平面的距离.