(本小题满分13分)(注意:在试题卷上作答无效)已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为. (Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率; (ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;(Ⅱ)设直线与轴、轴分别交于点,, 求证:为定值.
已知A、B为椭圆+=1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=a,AB中点到椭圆左准线的距离为,求该椭圆方程.
已知函数,仅当时取得极值且极大值比极小值大4,求的值.
(本小题满分12分)如图,在斜边为AB的Rt△ABC,过A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.(1)求证:BC⊥平面PAC.(2)求证:PB⊥平面AEF.(3)若AP=AB=2,试用tgθ(∠BPC=θ)表示△AEF的面积、当tgθ取何值时,△AEF的面积最大?最大面积是多少?
(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P、Q分别为AE、AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.
(本小题满分12分)P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC.