(本小题12分)盒子中装着标有数字1、2、3、4的卡片分别有1张、2张、3张、4张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用表示取出的3张卡片的最大数字,求:(Ⅰ)取出的3张卡片上的数字互不相同的概率;(Ⅱ)随机变量的概率分布和数学期望;(Ⅲ)设取出的三张卡片上的数字之和为,求.
函数在处取得极小值–2.(I)求的单调区间;(II)若对任意的,函数的图像与函数的图像至多有一个交点.求实数的范围.
已知点(1,2)是函数的图象上一点,数列的前项和为.(I)求数列的通项公式;(II)若,求数列的前项和.
在中,角所对的边分别为,,,且.(I)求;(II)若,且,求.
如图,在底面是正方形的四棱锥–中,平面⊥平面,===2.(I)求证:⊥; (II)求直线与平面所成的角的正弦值.
(Ⅰ)求数列的通项公式; (Ⅱ)记,求使成立的的最大值