(本小题12分)盒子中装着标有数字1、2、3、4的卡片分别有1张、2张、3张、4张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用表示取出的3张卡片的最大数字,求:(Ⅰ)取出的3张卡片上的数字互不相同的概率;(Ⅱ)随机变量的概率分布和数学期望;(Ⅲ)设取出的三张卡片上的数字之和为,求.
已知数列(常数),其前项和为() (1)求数列的首项,并判断是否为等差数列,若是求其通项公式,不是,说明理由; (2)令的前n项和,求证:
一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图4所示,其中,,,. (1)求证:; (2)求三棱锥的体积.
为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图3所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8. (1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数; (2)求调查中随机抽取了多少个学生的百米成绩; (3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
已知函数. (1)求函数的最小正周期和值域; (2)若函数的图象过点,.求的值.
已知函数,,图象与轴异于原点的交点M处的切线为,与轴的交点N处的切线为, 并且与平行. (1)求的值; (2)已知实数t∈R,求的取值范围及函数的最小值; (3)令,给定,对于两个大于1的正数,存在实数满足:,,并且使得不等式恒成立,求实数的取值范围.