(本小题12分)盒子中装着标有数字1、2、3、4的卡片分别有1张、2张、3张、4张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用表示取出的3张卡片的最大数字,求:(Ⅰ)取出的3张卡片上的数字互不相同的概率;(Ⅱ)随机变量的概率分布和数学期望;(Ⅲ)设取出的三张卡片上的数字之和为,求.
(1)求证:;(2)求证: 不可能成等差数列。
附加题(按满分5分计入总分,若总分超过满分值以满分计算) 如果集合满足,则称()为集合的一种分拆.并规定:当且仅当时,()与()为集合的同一种分拆.请计算集合所有不同的分拆种数有多少种?
已知函数满足:①定义在上;②当时,;③对于任意的,有. (1)取一个对数函数,验证它是否满足条件②,③; (2)对于满足条件①,②,③的一般函数,判断是否具有奇偶性和单调性,并加以证明.
已知函数() (1)若,作出函数的图象; (2)设在区间上的最小值为,求的表达式.
如图是一块形状为直角三角形的铁皮,两条直角边,. 现在要将剪成一个矩形,设,. (1)试用表示; (2)问如何截取矩形,才能使剩下 的残料最少?