(本小题12分)盒子中装着标有数字1、2、3、4的卡片分别有1张、2张、3张、4张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用表示取出的3张卡片的最大数字,求:(Ⅰ)取出的3张卡片上的数字互不相同的概率;(Ⅱ)随机变量的概率分布和数学期望;(Ⅲ)设取出的三张卡片上的数字之和为,求.
已知全集,函数的定义域为集合,函数的定义域为集合.(1)求集合和集合;(2)求集合(∁UA)∪(∁UB).
已知集合A={1,3,},B={+2,1}.是否存在实数,使得BA?若存在,求出集合A,B;若不存在,说明理由.
已知A、B、C的坐标分别为A(4,0),B(0,4),C(3cos α,3sin α).(1)若α∈,且||=||,求角α的大小;(2)若⊥,求的值.
如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积.
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足(-t)·=0,求t的值