(本小题满分12分)是首项的等比数列,其前项和为Sn,且成等比数列.(1)求数列的通项公式;(2)若,设为数列的前项和,求证:
(本题满分12分)在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()·=0,求t的值。
(本题满分12分)已知,,分别求当为何值时(1)与垂直?(2)与平行?平行时它们是同向还是反向?(3)与的夹角是钝角?
(本题满分10分)设是第二象限的角,,求的值.
(本小题满分15分)如图所示,已知椭圆和抛物线有公共焦点, 的中心和的顶点都在坐标原点,过点的直线与抛物线分别相交于两点(1)写出抛物线的标准方程;(2)若,求直线的方程;(3)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值。
(本小题满分15分)已知函数(I)当的单调区间;(II)若任意给定的,使得的取值范围。