(本小题满分10分)已知曲线的参数方程为(为参数),曲线的极坐标方程为.(1)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程;(2)曲线,是否相交,若相交请求出公共弦的长,若不相交,请说明理由.
如图,四棱锥PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.(1)求证:BD⊥平面PAC;(2)若侧棱PC上的点F满足PF=7FC,求三棱锥PBDF的体积.
已知函数.(Ⅰ)若函数在上不是单调函数,求实数的取值范围;(Ⅱ)当时,讨论函数的零点个数.
设函数.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)当时,求函数的单调区间;(Ⅲ)在(Ⅱ)的条件下,设函数,若对于,,使成立,求实数的取值范围.
已知函数的图象与的图象关于直线对称。(Ⅰ)若直线与的图像相切, 求实数的值;(Ⅱ)判断曲线与曲线公共点的个数.(Ⅲ)设,比较与的大小, 并说明理由.
已知函数,,其中.(Ⅰ)求的极值;(Ⅱ)若存在区间,使和在区间上具有相同的单调性,求的取值范围.