甲、乙两人同时参加奥运志愿者的选拔赛,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数的分布列及数学期望;(2)求甲、乙两人至少有一人入选的概率.
如图,在四棱锥中,底面是边长为的正方形, ,且点满足 . (1)证明:平面 . (2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .
已知一个几何体的三视图(单位:cm)如图所示,求(1)该几何体的体积(2)该几何体的表面积
已知集合,,且,求
已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,-1)共线.(1)求椭圆的离心率;(2)设M为椭圆上任意一点,且(),证明为定值.
如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中点.(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成角的正弦值;(3)以AC的中点O为球心、AC为直径的球交PC于点N求点N到平面ACM的距离.