甲、乙两人同时参加奥运志愿者的选拔赛,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数的分布列及数学期望;(2)求甲、乙两人至少有一人入选的概率.
(本小题满分14分) 已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线在轴上的截距为,设直线交椭圆于两个不同点、, (1)求椭圆方程; (2)求证:对任意的的允许值,的内心在定直线。
已知函数成等差数列,点是函数图像上任意一点,点关于原点的对称点的轨迹是函数的图像。 (1)解关于的不等式; (2)当时,总有恒成立,求的取值范围。
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. ,为的中点. (1)当时,求平面与平面的夹角的余弦值; (2)当为何值时,在棱上存在点,使平面?
(本小题满分12分) (1)求直线被双曲线截得的弦长; (2)求过定点的直线被双曲线截得的弦中点轨迹方程。
已知集合在平面直角坐标系中,点的横、纵坐标满足。 (1)请列出点的所有坐标; (2)求点不在轴上的概率; (3)求点正好落在区域上的概率。