已知定义域为 的函数同时满足以下三个条件: ①对任意 ,总有 ; ② ; ③若 ,则有 成立. (I)求 的值; (II)判断函数 在区间 上是否同时适合①②③,并给出证明.
(13分)如图,垂直于正方形所在的平面,(1)求证: (2)设棱的中点为求异面直线与所成角的大小.
(12分)古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有个圆盘依其半径大小,大的在下,小的在上套在柱上,现要将套在柱上的盘换到柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子可供使用. 现用表示将个圆盘全部从柱上移到柱上所至少需要移动的次数,回答下列问题: (1)写出并求出(2)记求和 (其中表示所有的积的和) (3)证明:
(12分)如图,斜率为1的直线过抛物线的焦点,与抛物线交于两点将直线按向量平移到 直线为上的动点.(1)若求抛物线的方程; (2)求的最小值.
(12分)已知函数(1)求函数的单调区间;(2)为何值时,方程有三个不同的实根.
(13分)正项数列的前项和为且 (1)试求数列的通项公式;(2)设求数列的前项和