(本小题满分12分)圆和圆的极坐标方程分别为.(1)把圆和圆的极坐标方程化为直角坐标方程;(2)求经过圆,圆两个交点的直线的直角坐标方程.
已知二次函数同时满足:⑴不等式的解集有且只有一个元素;⑵在定义域内存在,使得不等式成立。设数列的前 (1)求数列的通项公式; (2)设 (3)设各项均不为零的数列中,所有满足的正整数i的个数称为这个数列的变号数.另
.已知向量,ω>0,记函数=,若的最小正周期为. ⑴ 求ω的值; ⑵ 设△ABC的三边a、b、c满足b2=ac,且边b所对的角为,求的范围, 并求此时函数的值域。
已知函数. (1)若在[1,+∞上是增函数,求实数的取值范围; (2)若x=3是的极值点,求在[1,]上的最小值和最大值.
过点T(2,0)的直线交抛物线y2=4x于A、B两点. (I)若直线l交y轴于点M,且当m变化时,求的值; (II)设A、B在直线上的射影为D、E,连结AE、BD相交于一点N,则当m变化时,点N为定点的充要条件是n=-2.
设M是由满足下列两个条件的函数构成的集合: ①议程有实根;②函数的导数满足0<<1. (I)若,判断方程的根的个数; (II)判断(I)中的函数是否为集合M的元素; (III)对于M中的任意函数,设x1是方程的实根,求证:对于定义域中任意的x2,x3,当| x2-x1|<1,且| x3-x1|<1时,有