(本小题满分12分)已知函数。(1)求函数的最小正周期及函数取最小值时自变量的集合;(2)确定函数的单调递增区间;(3)若函数y=sin2x的图象向右平移m个单位(|m|<),向上平移n个单位后得到函数y=f(x)的图象,求实数m、n的值。
(本小题满分12分)下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人 (Ⅰ)求该专业毕业总人数N和90~95分数段内的人数; (Ⅱ)现欲将90~95分数段内的名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求名毕业生中男女各几人(男女人数均至少两人)? (Ⅲ)在(Ⅱ)的结论下,设随机变量表示n名毕业生中分配往乙学校的三名学生中男生的人数,求的分布列和数学期望.
【改编】(本小题满分12分)在中,角所对的边为,且满足 (1)求角的值; (2)若且,求的取值范围.
(本小题满分14分)已知函数在点处的切线为. (1)求实数,的值; (2)是否存在实数,当时,函数的最小值为,若存在,求出的取值范围;若不存在,说明理由; (3)若,求证:.
(本小题满分13分)已知抛物线,圆. (1)在抛物线上取点,的圆周上取一点,求的最小值; (2)设为抛物线上的动点,过作圆的两条切线,交抛物线于、点,求中点的横坐标的取值范围.
(本小题满分14分)已知首项为,公比不等于的等比数列的前项和为,且,,成等差数列. (1)求数列的通项公式; (2)令,数列的前项和为,求证:.