(本小题满分12分)某村计划建造一个室内面积为800的矩形蔬菜温室,在温室内沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积为多少?
求函数. (1)求的周期与值域; (2)求在上的单调递减区间.
设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x. (Ⅰ)若函数 g(x) 的图象在点 (0,0) 处的切线也恰为 f (x) 图象的一条切线,求实数a的值; (Ⅱ)是否存在实数a,对任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范围;若不存在,请说明理由. 注:e是自然对数的底数.
已知椭圆C:(a>0,b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切.又设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连结PB交椭圆C于另一点E. (Ⅰ)求椭圆C的方程; (Ⅱ)证明:直线AE与x轴相交于定点Q; (III)求的取值范围.
若将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a(如图). (Ⅰ)若,求证:AB//平面CDE; (Ⅱ)求实数a的值,使得二面角A-EC-D的大小为60°.
设数列 {an} 中,a1=a,an+1+2an=2n+1(n∈N*). (Ⅰ)若a1,a2,a3成等差数列,求实数a的值; (Ⅱ)试问数列 {an} 能为等比数列吗?若能,试写出它的充要条件并加以证明;若不能,请说明理由.