(本小题满分12分)已知函数(Ⅰ)求的最小正周期和单调递增区间;(Ⅱ)求在区间上的最大值和最小值.
已知等式,其中ai(i=0,1,2,…,10)为实常数.求:(1)的值;(2)的值.
已知x,y均为正数,且x>y,求证:.
求直线(t为参数)被圆(α为参数)截得的弦长.
将曲线绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.
已知等差数列的首项为a,公差为b,等比数列的首项为b,公比为a,其中a,b都是大于1的正整数,且.(1)求a的值;(2)若对于任意的,总存在,使得成立,求b的值;(3)令,问数列中是否存在连续三项成等比数列?若存在,求出所有成等比数列的连续三项;若不存在,请说明理由.