(本小题满分15分)运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(1)求这次行车总费用关于的表达式;(2)当为何值时,这次行车的总费用最低,并求出最低费用的值.
设,函数的定义域为,且,当,有;函数是定义在上单调递增的奇函数. (Ⅰ)求和的值(用表示); (Ⅱ)求的值; (Ⅲ)当时, 对所有的均成立,求实数的取值范围.
已知点. (Ⅰ)若,求和的值 (Ⅱ)若,其中为坐标原点,求的值.
设是定义在上以2为周期的函数,对,用表示区间. 已知当时,函数. (1)求在上的解析式; (2)对自然数,求集合{使方程在上有两个不相等的实根}
设函数的图象关于点对称. (Ⅰ)求; (Ⅱ)求函数的单调增区间; (Ⅲ)求函数在上的最大值和取最大值时的.
已知向量,分别求使下列结论成立的实数的值 (Ⅰ); (Ⅱ)