(本小题满分14分)如图:某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记.(1)试将污水净化管道的长度表示为的函数,并写出定义域;(2)若,求此时管道的长度;(3)问:当取何值时,污水净化效果最好?并求出此时管道的长度.
(本小题满分12分) 已知函数,在点处的切线方程为。 (1)求与的值; (2)求的单调区间。
(本小题满分12分) 设数列的前n项和为,且,数列为等差数列,且 (1) 求数列,的通项公式; (2)若,求数列的前n项和。
(本小题满分12分) 在中,,记的夹角为. (Ⅰ)求的取值范围; (Ⅱ)求函数的最大值和最小值.
(本小题满分12分) 已知是首项为19,公差为-2的等差数列,为的前项和. (1)当n为何值时最大(用两种方法); (2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和。
(本小题满分10分) 已知向量 =(cos,sin),=(cos,sin),||=. (Ⅰ)求cos(-)的值; (Ⅱ)若0<<,-<<0,且sin=-,求sin的值.