已知椭圆经过点(0,1),离心率。(1)求椭圆C的方程;(2)设直线与椭圆C交于A、B两点,点A关于x轴的对称点为。①试建立 的面积关于m的函数关系;②某校高二(1)班数学兴趣小组通过试验操作初步推断;“当m变化时,直线与x轴交于一个定点”。你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由。
(本小题满分10分) 已知直线l经过点P(,1),倾斜角,在极坐标系下,圆C的极坐标方程为。 (1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程; (2)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积。
(本小题满分10分) 如图,四边形ACBD内接于圆O,对角线AC与BD相交于M,AC⊥BD,E是DC中点连结EM交AB于F,作OH⊥AB于HH, 求证:(1)EF⊥AB(2)OH=ME
(本小题满分12分) 已知函数. (Ⅰ)若函数在,处取得极值,求,的值; (Ⅱ)若,函数在上是单调函数,求的取值范围.
(本小题满分12分) 抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点, 且。 (1) 求抛物线方程; (2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.
(本小题满分12分) 如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2. (1)证明:平面PBE平面PAB; (2)求PC与平面PAB所成角的余弦值。