(本小题满分14分)已知椭圆的左右焦点分别为F1、F2,点P在椭圆C上,且PF1⊥F1F2, |PF1|=, |PF2|=. (I)求椭圆C的方程;(II)若直线L过圆的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程。
(本小题满分12分)己知函数, (1)求函数的单调区间; (2)当时,证明:对时,不等式成立; (3)当,时,证明:.
(本小题满分12分)已知抛物线:(为正常数)的焦点为,过做一直线交抛物线于,两点,点为坐标原点. (1)若的面积记为,求的值; (2)若直线垂直于轴,过点P做关于直线对称的两条直线,分别交抛物线C于M,N两点,证明:直线MN斜率等于抛物线在点Q处的切线斜率.
(本小题满分12分) 己知三棱柱,在底面ABC上的射影恰为AC的中点D,,,又知 (1)求证:平面; (2)求点C到平面的距离; (3)求二面角余弦值的大小.
(本小题满分12分) 在清明节前,哈市某单位组织员工参加植树祭扫,林管局在植树前为了保证树苗质量,都会对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度,量出它们的高度如下:(单位:厘米) 甲:37 21 31 21 28 19 32 23 25 33 乙:10 30 47 27 46 14 26 11 43 46 (1)根据抽测结果画出茎叶图,并根据你所填写的茎叶图对两种树苗高度作比较,写出3个统计结论; (2)如果认为甲种树苗高度超过30厘米为优质树苗,那么在己抽测的甲种10株树苗中任选两株栽种,记优质树苗的个数为,求的分布列和期望.
(本小题满分12分)如图,在中,,, (1)求; (2)记BC的中点为D,求中线AD的长.