(本小题满分12分)某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的。约定用有序实数对表示“甲在号车站下车,乙在号车站下车”.(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(2)求甲、乙两人同在第3号车站下车的概率;(3)求甲、乙两人在不同的车站下车的概率.
已知圆的半径为,圆心在直线上. (Ⅰ)若圆被直线截得的弦长为,求圆的标准方程; (Ⅱ)设点,若圆上总存在两个点到点的距离为,求圆心的横坐标的取值范围.
已知的三个顶点的坐标为. (Ⅰ)求边上的高所在直线的方程; (Ⅱ)若直线与平行,且在轴上的截距比在轴上的截距大,求直线与两条坐标轴围成的三角形的周长.
在边长为4的正方形ABCD的边上有一点P沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,且y与x之间的函数关系式用如图所示的程序框图给出. (1)写出框图中①、②、③处应填充的式子; (2)若输出的面积y值为6,则路程x的值为多少?并指出此时点P的在正方形的什么位置上?
已知p:关于x的方程的两根均大于3,q:A={x|x2﹣2x+a>0}且1∉A, (1)求使p成立的充要条件; (2)若p∨q为真命题,求实数a的取值范围.
在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗,量出它们的高度如下(单位:厘米): 甲:37,21,31,20,29,19,32,23,25,33; 乙:10,30,47,27,46,14,26,10,44,46. (1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论; (2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的S大小为多少?并说明S的统计学意义.