(本小题满分15分)如图,斜三棱柱ABC—A1B1C1中,A1C1⊥BC1,AB⊥AC,AB=3,AC=2,侧棱与底面成60°角.(1)求证:AC⊥面ABC1;(2)求证:C1点在平面ABC上的射影H在直线AB上;(3)求此三棱柱体积的最小值.
已知,点在函数的图象上,其中 (1)求; (2)证明数列是等比数列; (3)设,求及数列的通项
已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于),直线,分别与直线交于两点 (1)求双曲线的方程; (2)是否为定值,若为定值,求出该值;若不为定值,说明理由。
如图,在四棱锥中,底面是正方形,侧面是正三角形,且平面⊥底面 (1)求证:⊥平面 (2)求直线与底面所成角的余弦值; (3)设,求点到平面的距离.
一个盒子中有5只同型号的灯泡,其中有3只合格品,2只不合格品。现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题: (1)求第一次取到不合格品,且第二次取到的是合格品的概率; (2)求至少有一次取到不合格品的概率。
在中,. (1)求角的大小; (2)若,,求.